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This paper considers the boundary conditions imposed by step edge sinks on an assembly of thermal point
defects in which reactions among antidefects may dominate defect lifetimes. A model of sink behavior is
described that incorporates the concepts of effective chemical potential �� and effective defect temperature T�

into the action of defect sinks. The law of mass action exactly couples the defect concentrations when T�=T.
An application of the results to a problem of current interest is described. Specifically, an earlier demonstration
of universality in island growth driven by ion-beam irradiation is reanalyzed to determine the extent to which
universality is sensitive to the boundary conditions imposed by the step edges on the diffusion field of reacting
thermal defects.
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I. INTRODUCTION

It was clearly recognized in early research that step edges
on crystal surfaces act as sites where excess atoms may in-
corporate into the crystal structure.1 For excess atoms �ada-
toms� or surface vacancies �advacancies� created by external
driving forces, step edges act as “sinks” that tend to restore
the defect population to equilibrium values.2,3 Typical driv-
ing forces that create defects and displace step edges on sur-
faces may be ion-beam irradiation,4–7 sublimation of surface
atoms at elevated temperatures,1,8 or deposition of atoms
from the vapor.9–11 These are the surface analog of similar
processes with vacancies and interstitials in the bulk crystal,
where edge dislocations, voids or surfaces structures such as
grain boundaries act as sinks.12,13 In both bulk and surface
cases, the transport of thermal defects to sinks is a diffusion
problem subject to boundary conditions at the sinks. As the
sinks cause the defect distribution to thermalize, the usual
boundary condition is a requirement that defects take thermal
equilibrium concentrations at each sink.9,12

The appropriate conditions have not yet been clearly iden-
tified for the case in which antidefects �i.e., adatoms and
advacancies on terraces or vacancies and interstitials in the
bulk� react strongly. A useful criterion is whether a defect life
cycle typically begins and ends with pair processes of spon-
taneous creation and annihilation or is instead typically de-
fined by independent events at sinks for the separate
defects.14 The former case occurs when sinks are widely
spaced or when the system is driven sufficiently strongly by
external creation processes. In the presence of strong cou-
pling among antidefects, two collective variables, the effec-
tive defect temperature T� and chemical potential ��, take
the place of independent concentration as descriptors for
the defect configuration,14 somewhat like carriers in
semiconductor15–17 driven by pair creation processes such as
interband light absorption. A careful discussion of the bound-
ary conditions at sinks satisfied by strongly reacting thermal
antidefects is, as yet, lacking.

Here we emphasize surface processes and merely recog-
nize that the extension to bulk processes is possible. It is
believed that reaction conditions prevail for sufficiently wide
terraces on many close-packed metal surfaces at high tem-

peratures and methods are being developed to grow terraces
many microns in size,18,19 easily sufficient for this purpose.
One may therefore anticipate that the conditions of defects at
sinks will become open to experimental assessment in future
research. One such possibility springs from the recent obser-
vation that islands, when nucleated by ion-beam irradiation
on large terraces,20 undergo a universal evolution of radius
a�t� relative to the terrace radius R.21 A beam of self-ions
with low ion energy resembles molecular beam epitaxy as
ions land gently in favored sites to create, by definition, ex-
cess adatoms. Higher impact energy creates added adatom-
advacancy pairs, from which adatoms may then sputter off
into vacuum. Above a neutral energy’ � more than one atom
is lost per incident ion so a net excess of advacancies occurs.
With sufficient intensity, for E��, the beam causes adatom
islands to nucleate and grow, while for E�� advacancy is-
lands nucleate and grow. It is observed that the universal
behavior is the same for adatom and advacancy islands, and
this offers unanticipated symmetry in the process of island
nucleation and growth.22 The observed a�t� conforms well to
the predictions of a theory for strongly reacting antidefects
constrained to equilibrium concentrations �so T�=T� at the
step edge that forms the perimeter of the growing island.22 In
the present paper this problem of island growth offers a test
case for the development of more general boundary condi-
tions for reacting assemblies. We enquire whether or not the
evolution remains universal when the boundary conditions at
sinks are relaxed from earlier requirements, specifically
when defect densities no longer take thermal equilibrium
values there.

For completeness we remark that a large literature con-
cerns flow to steps from adatom and advacancy populations,
even including driving forces such as currents in metals23

treated on the basis of work mentioned above.10 For refer-
ences the reader should consult reviews.3,5,24 For flow by
adatoms alone, continuum models have been used to discuss
flow including processes internal to steps25,26 in part on the
basis of much earlier work by Mullins.27 The present work
focuses instead on adatom-advacancy reactions, and the way
contact with step edges establishes the chemical potential ��

and the effective temperature T� of the defect populations on
neighboring terraces. This facilitates a discussion of univer-
sality in the consequent evolution.
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In the text below, the question of universality is deferred
to Sec. III. In Sec. II, the nature of boundary conditions in a
reacting assembly is discussed and a simplified model is de-
veloped to trace the behavior when the boundary conditions
at sinks are relaxed. Since some introduction to defect pro-
cesses may be helpful, an Appendix collects elementary facts
about notation, for the occupation probabilities c̄1 and c̄2 at
equilibrium, for adatoms and advacancies, respectively, and
for the collective parameters T� and �� that describe reacting
defect assemblies. What follows in the remainder of this in-
troduction is an outline of the equations that determine
driven transport to sinks.

To track the transport in driven systems we need diffusion
equations for the hydrodynamic evolutions of the locally av-
eraged concentrations, c1 and c2, of adatoms and advacan-
cies. For this purpose their random walk diffusion coeffi-
cients are written D1 and D2. The normal �linear� diffusion
equations must be augmented by two further terms. The first
is the creation rates per site K1 �K2� of adatoms �advacan-
cies� by the ion-beam; and the second is the balance
K12�c̄1c̄2−c1c2� of antidefect pair creation and pair-
annihilation processes. Here the first term in parentheses rep-
resents the rate at which pairs are spontaneously created, per
surface site, on the open, perfect terrace, and the second term
is the corresponding rate at which existing pairs react to
leave locally perfect terrace. The equations for the two spe-
cies are thus

�ci/�t = Di�
2�ci − c̄i� + K12�c̄1c̄2 − c1c2� + Ki, �i = 1,2� .

�1�

In treating the time evolution of driven reacting systems,
these two simultaneous, nonlinear partial differential equa-
tions are to be solved together, subject to boundary condi-
tions that are imposed on the reacting assembly at defect
sinks. Up to the present time there has been no complete
discussion of the appropriate boundary conditions and their
effects on the time evolution of the distributions. It is the
purpose of Sec. II to examine the boundary conditions and to
identify models of sufficient simplicity that the time devel-
opment of irradiated systems can be discussed with some
degree of generality. The results of Sec. II then feed into the
discussion in Sec. III of the extent to which the time evolu-
tion of driven islands remains universal in the face of various
alternative boundary conditions at sinks.

II. REACTIONS, THE LAW OF MASS ACTION, AND
BOUNDARY CONDITIONS

It is not apparent that the evolution of Eq. �1� from arbi-
trary initial distributions of �� and T� is of any particular use
or interest; distributions of practical concern profit from the
entropy increase associated with locally smooth variations in
T� and ��. Here we focus on the roles of pair processes,
diffusion, and defect sinks in establishing the smooth steady
state of a driven, reacting system. It may be noted in Eq. �1�
that the pair generation rate K12c̄1c̄2, the defect generation
rates at fixed sinks, and the diffusion coefficients Di, are
determined entirely by the lattice temperature T. Together

with the imposed defect creation rates Ki, they determine the
concentrations ci�r� through Eq. �1�, and hence T� and ��

also, using Eq. �A4�. By these means the actual lattice tem-
perature T enters into T� and ��, and their behavior at sinks.

A. Bulk reactions

Equations �1� present a balance among four processes of
driven defect creation, defect reaction, and defect elimination
by diffusion to sinks of adatoms and of advacancies. Our
focus is on the driven steady state and on evolution that is
quasistatic. In a quasistatic process the flow of defects
through the system is much larger than the flow that arises
from evolution, for example by the motion of sinks caused
by the defect flow. Solutions may thus be obtained conve-
niently by setting �c /�t→0 in Eq. �1� and then calculating
the sink motion using the flow Ji=−Di�ci obtained from the
solution ci�r�. In this process, the detailed geometry of the
diffusive flow is of less interest than the balance among the
competing processes, which are relatively subtle and give
rise to three distinct regimes of linear response. To explore
the latter factors with ease we simplify Eq. �1� by writing

Di�
2�ci − c̄i� → − �2Di�ci − c̄i� , �2�

thereby eliminating geometry entirely and leaving the non-
linear simultaneous equations

�2D1�c1 − c̄1� = K12�c̄1c̄2 − c1c2� + K1;

�2D2�c2 − c̄2� = K12�c̄1c̄2 − c1c2� + K2. �3�

Here, �2 is an effective inverse square diffusion length to
sinks. The diffusive flows in Eq. �3� correctly remain linear
in the concentrations, and in proportion the transport coeffi-
cients Di, while the nonlinear balance among the four pro-
cesses is unchanged. Note that �2Dic̄i represents the creation
rate at a sink in equilibrium, and �2Dici is the rate of loss,
with the two in balance at equilibrium when ci= c̄i. We now
use the simplified Eq. �3� to identify general regimes of be-
havior.

The behavior is defined entirely by the effect of the per-
turbing rates K1 and K2 on the three rates d1, d2, and k that
describe the kinetics at equilibrium, specifically

d1 = �2D1c̄1; d2 = �2D2c̄2; k = K12c̄1c̄2, �4�

for diffusion to sinks of adatoms, d1, and advacancies, d2,
and for equilibrium antidefect pair creation on the perfect
terrace, namely, k, respectively. In terms of more convenient
variables

�1 = �c1 − c̄1�/c̄1 = s1/c̄1; �2 = �c2 − c̄2�/c̄2 = s2/c̄2, �5�

one obtains by subtracting the second of Eq. �3� from the
first

d1�1 − d2�2 = K1 − K2. �6�

Using this value of �2 in the first of Eq. �3� one now finds

�1
2 + b�1 + c = 0, �7�

so that
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�1 = − 1
2b�1 � �1 + 4c/b2�1/2� , �8�

in which

b = �d1 + d2 + d1d2/k + K2 − K1�/d1;

c = �K1�1 + d2/k� − K2�/d1. �9�

Values of �2 are obtained by similar means or directly from
Eq. �6� with �1 from Eq. �8�.

The simplicity of solution notwithstanding, the results of
the calculation are not lacking in complication. The solutions
contain three separate regimes in which the changes of con-
centrations �1 and �2, respond linearly to the driving forces
K1 and K2, as described immediately in what follows.

�i� The Ki small. In this regime of true linear response the
perturbing force of defect creation is resisted both by diffu-
sion to sinks and by rebalanced recombination. We must se-
lect the − sign of � in Eq. �8�, because, with c small in Eq.
�8�, �1 must take the sign of K1 �i.e., +� or K2 �i.e., −� in c,
whichever perturbation is stronger. Then

�1 → c/b =
K1�1 + d2/k� − K2

d1 + d2 + d1d2/k + K2 − K1
, �10�

from which, for the linear response alone, K2−K1 in the de-
nominator must be dropped.

�ii� K1−K2�d1+d2+d1d2 /k. Here, the negative choice
from � is again required. As K2 becomes large in Eq. �10�,
evidently �1→−1, which corresponds to the adatom concen-
tration c1→0, as expected in the presence of the excess ad-
vacancies from K2.

�iii� K1−K2�d1+d2+d1d2 /k. The physical choice here is
the positive root, so that

�1 → − b = − �d1 + d2 + d1d1/k + K2 − K1�/d1. �11�

As K1 becomes large, �1→K1 /d1=K1 /�2D1c̄1, which is evi-
dent from Eq. �3� for the case when the term in K12 may be
neglected. Thus at large K1 the response becomes linear once
more, resisted by diffusion alone. Here c2→0 just as for c1
with K2 large �above�. Note that the term c /b from the ex-
pansion of the root is needed to obtain the lowest order cor-
rection to �1→−b for K1 large.

�iv� K1−K2�d1+d2+d1d2 /k. In this regime the value of
c /b2 becomes large and the solution takes the form

�1 → �c = ��K1�1 + d2/k� − K2�/d1�1/2. �12�

The appearance that the form of c in Eq. �9� allows c to
become negative, and hence �1 imaginary is, of course, mis-
leading. As K1−K2�d1+d2+d1d2 /k for this regime, it fol-
lows that c	d1+d2+d1d2 /k+K1d2 /k, in which all terms are,
in fact, positive.

B. Mass action

The product c1c2 is of special interest for our focus on
sink action. At the same time it evidently bears a close con-
nection to the concept of effective defect temperature T� in-
troduced through Eq. �A4�. In reacting assemblies the prod-
uct of concentrations for reactants in equilibrium follows the

law of mass action which, for the reacting antidefects of
concern here, reads

c1c2 = C�T� , �13�

with C= c̄1c̄2 a temperature-dependent constant. In the
present case, however, the concentrations obtained in the
above discussion are steady-state values for a driven system
rather than equilibrium values pertinent to mass action. The
extent to which the concentrations and the effective tempera-
tures to which they correspond, conform to mass action is
clearly of concern in the present discussion of sink behavior.

A simple measure of the reaction behavior is given by the
quantity

m =
c1c2

c̄1c̄2

. �14�

If mass action holds, m=1. In practice m is obtained from �1
in Eqs. �3�, �4�, �8�, and �9� as

m = 1 + �K1 − d1�1�/k . �15�

For K1 and c1 large the limiting value of m may be traced as

m → 1 + d1/k, �K1 large� , �16a�

With �1 from Eq. �10� instead, for the regime of linear re-
sponse, we now find

m → 1 +
K1/D1c̄1 + K2/D2c̄2

	2 + �2 , �K1 and K2 small� ,

�16b�

in which, as in earlier studies,14

	2 = K12�D1c̄1 + D2c̄2�/D1D2. �17�

In linear response, the correction to the law of mass action
�m=1� is evidently the sum of creation rates, each divided by
the mobility Dic̄i of the species, multiplied by a squared
wave vector. The latter is the sum of two terms one, �2,
relating to the length of random walk to sinks, and the other
	2, fixing the distance over which reactions are completed.14

In a related development, we may obtain the effective
defect temperature T� as

T� = T
ln c̄1c̄2

ln c1c2
= T

ln c̄1c̄2

ln mc̄1c̄2

=
T

1 + �ln c̄1c̄2�−1ln m
. �18�

In these equations ln c̄1c̄2	−10 typically, for defects on sur-
faces �a value 	−1 would require c1 ,c2 , 	1, which is much
too large, while a value 	−102 would require c1 ,c2 ,
	10−20, which is much too small�. The equations reveal that
T�=T exactly when the law of mass action is valid, and that
T� may remain very close to T even in the presence of small
deviations from mass action.

We take particular interest in the behavior for the regime
of linear response. From Eqs. �7�–�9� this regime occupies
the range


c
/b2 	 
�1
/b 
 1. �19�

For strongly reacting systems, with k large, this criterion
becomes
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d1
�K

�d1 + d2�2 
 1, �k � d1,d2� �20�

in which �K=K1−K2. With 	2��2 we now find from Eq.
�16� that m�1, and thus from Eq. �18�, T��T, through the
entire domain of linear response. In the regime of weak re-
actions, however, with k /d small the range of linear response
is smaller, namely

k
K1

d1d2


 1, �21�

and the deviations of m from 1 in Eq. �15� and T� from T in
Eq. �18� may possibly be more substantial. It is an important
conclusion that the law of mass action is closely followed,
and that T� consequently remains close to T, throughout the
domain of linear response for strongly reacting systems, with
k�d1 ,d2.

The precise behavior of T� in reacting assemblies may
evidently be accessed by the present methods and it is to a
simple example of general interest that we now turn. It will
suffice for the present purposes to examine the case of a
terrace driven by either adatom creation K1=K with K2=0 or
advacancy creation K2=K with K1=0. To avoid complication
we make the two species of defect equally mobile �i.e., d1
=d2=d�, although generally they must differ, and for metals
d1 is usually thought to be the larger. Given our model choice
we can determine by direct calculation the variation in �1
�and hence c2� and m=c1c2 / c̄1c̄2 with scaled driving force
K /d and scaled reaction rate k /d, using Eqs. �8� and �15�,
above. Figure 1 shows how c1 and c2 vary with irradiation
rate over a wide range of driving forces for two strongly
differing reaction rates. The irradiation level is shown as
log10�1+K /d� for values of K from 0 to 103 times the equi-
librium diffusion rate d. In the two sets of data c1 and c2 are
given for k=102d, so reactions are dominant, and k=0.1d,
when diffusion is dominant. Even these large differences

cause only small deviations between the two values of c1,
mainly for K small. However, the values of c2 differ by an
order of magnitude, as advacancies are more strongly sup-
pressed when the reaction rate is large. Variations in ��−� in
the driven systems, which depend mainly on c1 /c2, likewise
depend only weakly on k, as shown in Fig. 2 for the case
c̄1= c̄2.

The differences are much more striking for m=c1c2 / c̄1c̄2
in the driven systems. This is illustrated in Fig. 3 by graphs
showing log10 m as a function of log10�c1 / c̄1� for reaction
rates k of 10−1d, d, 10d, and 100d. The lower half of the
figure shows analogous results when the irradiation created
advacancies rather than adatoms. In all cases m rises linearly

FIG. 1. Graphs showing the defect concentration c1 and c2, as
functions of driving irradiation K for two cases in which, first,
recombination is weaker than diffusion, k /d=0.1 and second, is
much stronger than diffusion, k /d=100. In the figure, the ion-beam
creates defect at rates up to K /d=1000 times diffusion. The per-
turbed c1 is not very sensitive to k /d but c2 is suppressed more
when recombination is dominant.

FIG. 2. Graphs showing the effective chemical potential �� as a
function of driving irradiation K for two cases in which recombina-
tion is weaker than diffusion, k /d=0.1, and much stronger than
diffusion, k /d=100. The ion-beam creates defect at rates up to
K /d=1000 times diffusion. The resulting defect chemical potential
�� does not change strongly with scaled recombination rate k /d.

FIG. 3. Law of mass action, monitored by log10 m, with m
=c1c2 / c̄1c̄2, shown as a function of c1 over a factor 103 in the
driven system, for four values of k /d. The upper half of the figure
represents irradiation by adatoms and the lower half advacancies. In
agreement with Eq. �21�, m increases linearly with c1 but then satu-
rates. As a result, the law of mass action c1c2= c̄1c̄2 holds with
increasing precision for k /d�1. Under these conditions, also,
T��T.
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with c1 for c1 small, in accordance with Eq. �16b�. An im-
portant point is that this increase quickly saturates to leave m
independent of c1, as given by Eq. �16a�. It is of central
interest in this paper that m never exceeds 	2 even for k
=d, and for k�d we find m�1 with increasing precision as
k is increased. Under these conditions, then, the law of mass
action is obeyed accurately. The fractional deviations of T�

from T are much smaller still, depending on c̄1c̄2, in keeping
with the predictions of Eq. �18�.

In general summary of these observations, the response c1
remains linear in driving force K1 and is not very sensitive to
the magnitude of recombination relative to diffusion. How-
ever, c2 is suppressed more strongly for large k /d. The law of
mass action m=1 is obeyed with accuracy for all K1 when
k�d and the kinetics are thus dominated by pair reactions. A
consequence of the law of mass action is that the effective
temperature of the reacting assembly is pinned at T��T. In
this case the local configuration at steady state is almost en-
tirely fixed by �� through the equations

c1�r� = c̄1 exp�����r� − ��/kBT�;

c2�r� = c̄2 exp�− ����r� − ��/kBT� . �22�

These results are sufficiently simple as to suggest useful
models for determining boundary conditions on a reacting
assembly. We return to this topic after first examining models
for sink action.

C. Reactions at step edge sinks

Just as a driven terrace relaxes in part by recombination
and in part by diffusion of defects to step edge sinks, the
driven sinks themselves function by a combination of reac-
tion by defects trapped from the terrace, and their diffusion
to kinks at various locations along the step profile. Figure 4
is a cartoon in which the upper drawing shows a step profile
with spaced kinks and the lower drawing includes trapped
adatoms and advacancies. The latter are free to annihilate by
pair reaction �arrow� or at kinks. We assume here that kinks
provide sinks at which defects annihilate �or form� with no
further consequence for the free energy of the system caused
by the modified sink configuration. The creation energies f1s
and f2s for defects bound to steps near kinks must therefore
generally differ from those, f1 and f2, on the open terrace, by
the defect binding free energies b1 and b2 to the step edge:

bi = f i − f is; �i = 1,2� . �23�

This modifies the equilibrium concentrations of defects
bound on steps to:

c̄1s = c̄1 exp�b1/kBT�; c̄2s = c̄2 exp�b2/kBT� �24�

In general the hopping diffusion coefficients also change so
we use D1s and D2s for diffusion along a step to a kink.
General expectations are that the free energies b are positive
and that Dis�Di for diffusion along step edges.

A point of considerable interest here is that the kinetics of
a step edge sink driven by trapping rates �per site� of K1s and
K2s, of defects from the nearby terraces very much resembles
a one-dimensional analog of the two-dimensional case dis-
cussed in Sec. II B of a terrace driven by rates K1 and K2 by
ion-beam irradiation. The attractive possibility emerges for
simply adapting the terrace results to the step sink, using a
defined effective temperature Ts

� and chemical potential �s
�

to describe the sink configuration. This is particularly appeal-
ing when both the sink and the terrace exist in regimes where
the law of mass action holds such that

Ts
� = T� = T, �ms = m = 1� . �25�

Then the entire operation of the combined terrace and sink
must be described by the effective chemical potentials �s

�

and ���r� of the sink and terrace, respectively. The charac-
teristics of boundaries between sink and terrace are discussed
in what follows.

It bears comment that the connection between effective
temperature and mass action has been discussed using the
simplified form of Eq. �3�. However, the definition in Eq.
�A4� of T�, combined with the explicit term K12c1c2 in the
full Eq. �1�, lends confidence that the same insights for ef-
fective temperatures hold also for the full solutions.

D. Reaction boundary conditions at sinks

In what follows we develop a model of boundary condi-
tions for a case in which the law of mass action is accurately
valid everywhere. The result is that the effective tempera-
tures everywhere coalesce upon the lattice temperature T.
Flow of defects over the terrace then responds solely to the
gradient ����r� of effective defect potential. Flow from the
terrace to the sink is responsive to the actual values of the
chemical potentials �� and �s

� at the sink, by arguments
discussed below. Upon adapting Eq. �3� to the case of sink
kinetics, we characterize the sink by a single value of �s

�,
and thereby avoid the description of sinks with position-
dependent properties. This is not, of course, a faithful de-
scription, but it is difficult to see that errors of principle are
thereby introduced. The resulting approximation has the
merit of leading directly to a clear and physically appealing
model of reaction boundary conditions at sinks.

Consider then the excess flow of K1s, K2s defects per sec-
ond �per sink site� from the terrace to trapped locations at the
sink. There result excess occupancies �1s and �2s, per site of
defects. These are obtained from Eqs. �22� and �24� as

FIG. 4. Cartoon showing a step profile with spaced kinks �top�.
The step traps adatoms and advacancies �bottom� that can recom-
bine �arrow� or annihilate at kinks.

BOUNDARY EFFECTS ON UNIVERSAL GROWTH OF… PHYSICAL REVIEW B 81, 075426 �2010�

075426-5



�1s = exp���s
� − ��/kBT�; �2s = exp�− ��s

� − ��/kBT� ,

�26�

given that the law of mass action holds. Kink sites have ��

=� and the difference from other edge sites causes excess
defects to flow to the kinks. Given ns step edge sites per
kink, the net currents of atoms are

J1 = ns�s
2D1sc̄1s�1 � ns�s

2D1sc̄1s��s
� − ��/kBT;

J2 = − ns�s
2D2sc̄2s�2 � ns�s

2D2sc̄2s��s
� − ��/kBT , �27�

and by adding these contributions we find the total sink cur-
rent to a kink as

Js = J1 + J2 = ns�s
2�D1sc̄1s + D2sc̄2s���s

� − ��/kBT , �28�

or, Js = ��s
� − ��;  = ns�s

2�D1sc̄1s + D2sc̄2s�/kBT . �29�

This flux of atoms to kinks is of course driven by a flux of
atoms over the terrace to trapped sites on the step edge. From
the Nernst-Einstein equation the current from the terrace per
kink, passing to a length nsl of step, with l the site spacing, is

Jt = − nsl��D1c̄1 + D2c̄2�/AkBT������s, �30�

in which the area A per site converts occupation probabilities
c into concentrations C, and the gradient is evaluated next to
the sink. Note, for typical cases in which reactions are domi-
nant because sinks are widely spaced, that the changes of ��

from one site to the next that drive this flux are very small,
perhaps 	10−4 �� for terraces 104 atoms wide. As transi-
tions taking defects into sink sites are not in any way im-
peded, there is no reason to suppose that larger driving po-
tentials are needed to promote transitions into the sink. For
this reason, the actual chemical potential ����s on the terrace
next to the sink can be taken as almost identical to that, �s

�,
of trapped defects actually in the sink specifically

����s � �s
�, �31�

with an error typically 	10−4 that is negligible. A cartoon
depicting the consequent behavior of �� near sinks is pro-
vided as Fig. 5. With the replacement of Eq. �31� in Eq. �29�,
we find by equating the currents Js and Jt per kink in Eqs.
�28� and �30� that

������ − ���s = ��� − ��s; � = −
l�D1c̄1 + D2c̄2�

�s
2A�D1sc̄1s + D2sc̄2s�

.

�32�

Equation �32� is the principal result of Sec. II. For sys-
tems in which the law of mass action holds for both sinks
and terraces, T�=T throughout, and the boundary condition
on the terrace diffusion field is evidently that the effective
chemical potential �� on the terrace near the sink has a fixed
ratio, �, of amplitude to derivative, given explicitly in Eq.
�32�. Note that when transport in a sink is much more rapid
than on the terrace, �→0, so then ����s→�, and one thus
recovers the conventional boundary condition for diffusion
fields at equilibrium sinks.14 Section III considers the conse-
quences of the more general boundary conditions for the uni-

versality of growth for islands nucleated on terraces.

III. EFFECT OF BOUNDARY CONDITIONS ON DRIVEN
ISLAND GROWTH

We can illustrate the approach to boundary conditions
outlined above by application to the significant problem of
the growth of islands on terraces driven by an ion-beam.
Several researchers have found evidence that boundary con-
ditions for diffusing defects at step edge sinks may be more
elaborate than the simple requirement of an equilibrium de-
fect density. In step fluctuation studies of step stiffness on
Si�001�, for example28 evidence for an “attachment” model
in which reaction at steps is so slow that the flow from the
terrace requires negligible gradients. This is the limit �→�
of Eq. �32�, which extends readily to cover this physical
behavior. A second example comes from the study of relax-
ation by step flow during annealing of TiN �001� at elevated
temperature,29 to suggest that thermal defects may cross
steps without attaching,30 so that the steps are in part trans-
parent to defect flow. The resulting excess of defect density
immediately next to the step may once more be modeled by
boundary conditions with a fixed ratio of derivative to am-
plitude in defect occupancy. These considerations open the
possibility that step edges may act as reactive sinks and in
this way modify the universality of driven island growth
identified when sinks locally maintain thermal equilibrium
conditions. This is the topic addressed below.

A. Boundary conditions on defect concentrations

It is convenient to obtain boundary conditions in terms of
defect occupation probabilities written alternatively as ci, si
=ci− c̄i, or �i=si / c̄1, �Eq. �5�� rather than chemical potentials

FIG. 5. Defect flow over surface to a sink. Short horizontal lines
indicate chemical potentials �� at successive sites. Hopping among
sites �e.g., inverted U with arrow� causes net downhill flow Jt�r� of
defects over the terrace terminating at ����s adjacent to the sink.
From there defects can hop to potential �s

� at sink sites and even-
tually annihilate at chemical potential � through processes internal
to the sink. Local mixing causes the effective defect chemical po-
tential �� to vary smoothly from site to site on terraces, driving
defect flow to or from the sinks. On terraces microns wide, the
change of �� between neighboring sites is 	10−4���−��. Conse-
quently �s

� in the sink is almost equal to ����s on the neighboring
terrace, as shown.
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��. For linear response in the case of interest here, for which
the law of mass action is closely valid, this is accomplished
as follows.

First, from Eq. �26� we find the connection between the �i
and �� as

�1 = �c1 − c̄1�/c̄1 = exp���� − ��/kBT� − 1

� ��� − ��/kBT = − �2, �33�

so that

���� − ��/���� − ���s = ��1/��1�s = ��2/��2�s = � ,

�34�

with � constant; the same result for �2 follows much as that
for �1. The approximation in Eq. �33� assumes that the ex-
ponent is small, consistent with the linear regime discussed
here. The first boundary condition on the concentration
changes is therefore that the departures from equilibrium val-
ues obey the same amplitude to derivative constraint demon-
strated in Sec. II for ��−�. This condition requires the
steady-state diffusive flow to the boundary to equal the
steady-state transfer from the terrace to the sink.

A second boundary condition constrains the time evolu-
tion of concentration, at all points, but most particularly at
the boundaries. For sinks to thermalize the defect distribu-
tion, the concentrations must obey the law of mass action at
the sink. With � /�t→0 in Eq. �1�, and c1c2� c̄1c̄2, we obtain
for sink sites the conditions

��2�1�s = − K1D1c̄1; ��2�2�s = − K2D2c̄2, �35�

on the driven, steady state concentrations. Some comment on
the results is desirable.

Equations �33� applied at sinks gives c1c2� c̄1c̄2 just as
does the requirement c1= c̄1 , c2= c̄2 of thermal equilibrium
employed in earlier research. The effect is nevertheless dif-
ferent, in that the concentrations are now permitted to depart
from equilibrium values in accordance with Eq. �34�. These
are properties of sinks at which reactions are fast enough that
the lattice temperature is imposed on the defect system by
sinks, but not so rapid that the defect system is constrained to
the chemical potential � of the lattice at equilibrium, even at
fixed sinks. The effect of these boundary conditions on the
driven flow of defects to islands is the subject to which we
turn in what follows.

B. Driven island growth

In the problem to be solved here, an island of radius a
grows at the center of a pan or mesa of radius R, under the
influence of ion-beam creation rates K1 and K2. We now
assume that the same boundary conditions �si /�si�s=� and
i=1,2, apply both at a and at R. The quantity of interest is
the rate a�t� at which growth of the island is driven by the
beam and whether the evolution takes a universal form inde-
pendent of �.

Elsewhere it is shown22 how the desired a�t� may be ob-
tained from quasistatic solutions of the linearized simulta-
neous Eq. �1�, when subject to the appropriate boundary con-
ditions, in the present case Eqs. �34� and �35�. As in the

earlier work, the general solutions, including Eq. �35� take
the form

�1 =
K2 − K1

D1c̄1 + D2c̄2

f�r� +
A

	2 g	�r�
g	���

− 1�;

�2 =
K1 − K2

D1c̄1 + D2c̄2

f�r� +
A

	2 g	�r�
g	���

− 1� , �36�

in which A = −
D1c̄1K2 + D2c̄2K1

D1c̄1 + D2c̄2

;

	2 =
K12�D1c̄1 + D2c̄2�

D1D2
. �37�

Here g	�r� is the solution of ��2+	2�g	�r�=1 with g�r�=1 at
fixed sinks r=�, and f�r� is the solution of Poisson’s equa-
tion �2f�r�=1, now chosen to satisfy reaction boundary con-
ditions �Eq. �34�� at the step edge sinks.

Previous research22 was carried through for the limit of
strong reactions with 	2R2�1, when the second terms in Eq.
�37� may be neglected, leaving the first �Poisson� term in f�r�
alone. To determine the sensitivity of universality to the
boundary constant � it will suffice to study the solutions in
this same limit for reaction conditions. The solution f�r�
=r2 /4, and solutions of Laplace’s equation �2f =0 with cir-
cular symmetry may be added to satisfy the boundary con-
ditions at r=a and r=R. Thus

f��r� = B + r2/4, �0 � r � a�;

f��r� = C + D ln r + r2/4, �a � r � R� . �38�

with B, C, and D constants. The amplitude to derivative ra-
tios in the two functions are

 f�

df�/dr
�

a

=
B + a2/4

a/2
= �;

 f�

df�/dr
�

a

=
C + D ln a + a2/4

D/a + a/2
= �;

 f�

df�/dr
�

R
=

C + D ln R + R2/4
D/R + R/2

= � . �39�

One thus obtains

B = �a� − a2/2�/2; D =
�R − a��R + a − 2��

��R − a�/aR − ln�a/R�
, �40�

and C may likewise be found from Eq. �38�.
It is now easy to determine that the boundary conditions

modify the universality found earlier for �=0. From the de-
rivatives above we find that the ratio Ja /JR of atom current Ja
to the step at a to the current JR to the peripheral step at R is
given by
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Ja

JR
=

1

1 + R2/2D
. �41�

Here, the current to a includes contributions from both inside
and outside the step. We see that the apportionment between
a and R of precipitating defects created by irradiation is a
function of both � and a /R, so that the universal evolution of
a /R with time is in general lost. When �=0 in Eq. �40�,
however, D /R2 once more becomes a function only of a /R,
and the universality discovered earlier21,22 for the thermal
equilibrium boundary condition is recovered in Eq. �41� also.
This is the desired result. From Eq. �40� it is clear, starting
from a small, that deviations from universality first occur for
a /R	exp�� /a�.

IV. SUMMARY

This paper treats the boundary conditions to which ther-
mal defects created by irradiation are subject. The focus is on
the steady-state response of surfaces to irradiation, under
conditions of elevated temperatures where the life cycle of
defects is strongly influenced by pair processes of antidefect
formation and annihilation on the perfect terrace. The bound-
ary conditions obeyed at step edges by the evolving defect
system have not previously been discussed in detail. Some
work has gone forward with the assumption that the step
edge sinks impose on the defect system near the step con-
centrations that locally take thermal equilibrium values.22

In this paper we present a more general, but still well-
defined type of sink that brings the defect system locally to
the same temperature T�=T as the lattice and establishes a
defect chemical potential ���r� appropriate to the local state
of steady flow. In this regime the law of mass action c1c2
= c̄1c̄2 is closely valid, and for the equilibrium lattice tem-
perature, although the two concentrations both depart from
equilibrium values. In a linearly responding system, the ex-
cess defect concentrations both obey boundary conditions of
the same fixed derivative-to-amplitude ratio, determined by
the relative mobilities for flow over the terrace and into the
sink.

As an illustrative exercise, the defect flow from ion-beam
irradiation to a growing island on a circular terrace is calcu-
lated for a case in which step edges act as reactive sinks
rather that as points at which defect concentrations locally
take equilibrium values. The universality of evolution deter-
mined for the latter case is found to hold no longer with the
more general boundary conditions.

It will be important in future research to incorporate the
Gibbs Thompson potential at precipitates into the description
of defect flow at step edges, in order that island nucleation,
growth and subcritical fluctuations may be treated more
completely for reacting assemblies.
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APPENDIX: SURFACE DEFECT PROCESSES

The discussion in the text requires a brief introduction
here to defect processes on surfaces. Suppose then that work
F2 is needed to remove an atom from a perfect terrace, and
work F1 is needed to place a host atom onto an available site
of a perfect terrace. The net work in the two cases of ada-
toms and advacancy formation, respectively, is:

f1 = F1 − �; f2 = F2 + �; �A1�

in which � is the chemical potential of host atoms; in Eq. �1�
the terms in � allow for the acquisition of a host atom to
replace as the adatom, and the disposal of the atom removed
in creating the advacancy. It is a simple matter to show that
the �dilute� equilibrium concentrations, c̄1 , c̄2 on the terrace,
of the antidefects thus created, are

c̄1 = e−f1/kBT = e−�F1−��/kBT; c̄2 = e−f2/kBT = e−�F2+��/kBT.

�A2�

In the paper we deal with processes by which adatoms
and advacancies are, in addition, created by the action of
imposed ion-beam irradiation, leading to actual defect con-
centrations c1�r� and c2�r�, that are generally dependent on
location r. We may write

c1 = e−f1
�/kBT�

= e−�F1−���/kBT�
; c2 = e−f2

�/kBT�
= e−�F2+���/kBT�

.

�A3�

to define the “effective chemical potential” �� and “effective
antidefect temperature” T� as

�� − � = �kB/2��T� ln�c1/c2� − T� ln�c̄1/c̄2��; T� = T
ln c1c2

ln c̄1c̄2

.

�A4�

In what follows we take particular interest in cases where
T�=T, when evidently

c1 = c̄1e���−��/kBT; c2 = c̄2e−���−��/kBT; �T� = T� .

�A5�

Note that the law of mass action c1c2= c̄1c̄2 is exactly valid in
this case alone, when spontaneous creation and annihilation
of pairs are in exact local balance. The chemical potential ��

is determined by the relative proportions of the two species,
just as is the Fermi energy in the analogous case of carriers
in semiconductors.15–17
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